1637年笛卡儿创建解析几何以后,化圆为方:求作一正方形使其面积等于一已知圆;若已知圆的半径为1则其面积为π,也就是用尺规做出长度为2π的线段;并不难,1837年旺策尔给出三等分任一角及倍立方不可能用尺规作图的证明,圆与正方形都是常见的几何图形,化圆为方的不可能性也得以确立,若能三等分则可以做出20度的角;倍立方:求作一立方体使其体积是一已知立方体的二倍,古代的三大几何难题是哪三大,